- 专利标题: POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL
-
申请号: US16189480申请日: 2018-11-13
-
公开(公告)号: US20190325620A1公开(公告)日: 2019-10-24
- 发明人: Jonas Anders Adler , Ozan Öktem
- 申请人: Elekta AB (publ)
- 主分类号: G06T11/00
- IPC分类号: G06T11/00 ; G06T7/10
摘要:
Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminator, to generate posterior distribution sampled images that can be displayed or further processed such as to help provide uncertainty information about a mean reconstruction image. Such uncertainty information can be useful to help understand or even visually modify the mean reconstruction image. Similar techniques can be used in a segmentation use-case, instead of a reconstruction use case. The uncertainty information can also be useful for other post-processing techniques.
公开/授权文献
- US10672153B2 Posterior image sampling using statistical learning model 公开/授权日:2020-06-02
信息查询
IPC分类:
G | 物理 |
G06 | 计算;推算或计数 |
G06T | 一般的图像数据处理或产生 |
G06T11/00 | 2D〔二维〕图像的生成 |