POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL
摘要:
Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminator, to generate posterior distribution sampled images that can be displayed or further processed such as to help provide uncertainty information about a mean reconstruction image. Such uncertainty information can be useful to help understand or even visually modify the mean reconstruction image. Similar techniques can be used in a segmentation use-case, instead of a reconstruction use case. The uncertainty information can also be useful for other post-processing techniques.
公开/授权文献
信息查询
0/0