Invention Application

Abstract:
Methods, systems, and computer-readable storage media for receiving a set of document-level training data including a plurality of documents, each document having a sentiment label associated therewith, receiving a set of aspect-level training data including a plurality of aspects, each aspect having a sentiment label associated therewith, training the aspect-level sentiment classifier including a long short-term memory (LSTM) network, and an output layer using one or more of pretraining, and multi-task learning based on the document-level training data and the aspect-level training data, pretraining including initializing parameters based on pretrained weights that are fine-tuned during training, and multi-task learning including simultaneous training of document-level classification and aspect-level classification, and providing the aspect-level sentiment classifier for classifying one or more aspects in one or more sentences of one or more input documents based on sentiment classes.
Public/Granted literature
- US10726207B2 Exploiting document knowledge for aspect-level sentiment classification Public/Granted day:2020-07-28
Information query