Contrastive Neural Network Training in an Active Learning Environment
摘要:
Embodiments relate to a system, program product, and method for training a contrastive neural network (CNN) in an active learning environment. A neural network is pre-trained with labeled data of a historical dataset. The CNN is trained for the new dataset by applying the new dataset and contrasting the new dataset against the historical dataset to extract novel patterns. Features novel to the new dataset are learned, including updating weights of the knowledge operator. The borrowed knowledge operator weights are combined with the updated knowledge operator weights. The CNN is leveraged to predict one or more labels for the new dataset as output data.
信息查询
0/0