MACHINE LEARNING TECHNIQUES FOR SELECTING PATHS IN MULTI-VENDOR RECONFIGURABLE OPTICAL ADD/DROP MULTIPLEXER NETWORKS
Abstract:
Devices, computer-readable media and methods are disclosed for selecting paths in reconfigurable optical add/drop multiplexer (ROADM) networks using machine learning. In one example, a method includes defining a feature set for a proposed path through a wavelength division multiplexing network, wherein the proposed path traverses at least one link in the network, and wherein the at least one link connects a pair of reconfigurable optical add/drop multiplexers, predicting an optical performance of the proposed path, wherein the predicting employs a machine learning model that takes the feature set as an input and outputs a metric that quantifies predicted optical performance, and determining whether to deploy a new wavelength on the proposed path based on the predicted optical performance of the proposed path.
Information query
Patent Agency Ranking
0/0