DEEP LEARNING AUTOTUNING TASK OPTIMIZATION
Abstract:
Systems and methods are provided for improving autotuning procedures. For example, the system can implement a task launcher, a scheduler, and an agent to launch, schedule, and execute decomposed autotuning stages, respectively. The scheduling policy implemented by the scheduler may perform operations beyond a simple scheduling policy (e.g., a FIFO-based scheduling policy), which produces a high queuing delay. By leveraging autotuning specific domain knowledge, this may help reduce queuing delay and improve resource utilization that is otherwise found in traditional systems.
Public/Granted literature
Information query
Patent Agency Ranking
0/0