TIME SERIES ALIGNMENT USING MULTISCALE MANIFOLD LEARNING
Abstract:
Systems and methods are described for performing dynamic time warping using diffusion wavelets. Embodiments of the inventive concept integrate dynamic time warping with multi-scale manifold learning methods. Certain embodiments also include warping on mixed manifolds (WAMM) and curve wrapping. The described techniques enable an improved data analytics application to align high dimensional ordered sequences such as time-series data. In one example, a first embedding of a first ordered sequence of data and a second embedding of a second ordered sequence of data may be computed based on generated diffusion wavelet basis vectors. Alignment data may then be generated for the first ordered sequence of data and the second ordered sequence of data by performing dynamic time warping.
Information query
Patent Agency Ranking
0/0