METHOD AND APPARATUS WITH NEURAL NETWORK TRAINING
Abstract:
A processor-implemented method with neural network training includes: determining first backbone feature data corresponding to each input data by applying, to a first neural network model, two or more sets of the input data of the same scene, respectively; determining second backbone feature data corresponding to each input data by applying, to a second neural network model, the two or more sets of the input data, respectively; determining projection-based first embedded data and dropout-based first view data from the first backbone feature data; and determining projection-based second embedded data and dropout-based second view data from the second backbone feature data; and training either one or both of the first neural network model and the second neural network model based on a loss determined based on a combination of any two or more of the first embedded data, the first view data, the second embedded data, the second view data, and an embedded data clustering result.
Public/Granted literature
Information query
Patent Agency Ranking
0/0