AUTOMATED GRAPH BASED INFORMATION EXTRACTION
Abstract:
A set of sentences within a natural language text document are parsed, generating a word-level graph corresponding to a sentence in the set of sentences. Within the word-level graph using a trained entity identification model, a set of entity candidates are identified. From a set of graphs modelling relationships between portions of the set of sentences, a set of embeddings is generated. From a set of pairs of embeddings in the set of embeddings using a set of deconvolution layers, a set of links between entity candidates within the set of entity candidates is extracted. From the set of links and the set of entity candidates, an output graph modelling linkages between portions of the set of sentences within the natural language text document is generated.
Public/Granted literature
Information query
Patent Agency Ranking
0/0