ANOMALY DETECTION METHOD AND APPARATUS FOR MULTI-TYPE DATA
摘要:
The present disclosure provides an anomaly detection method and apparatus for multi-type data. According to the anomaly detection method for multi-type data, an adversarial learning network is trained, so that a generator in the adversarial learning network fits a distribution of a normal training sample and learns a potential mode of the normal training sample, to obtain an updated adversarial learning network, an anomaly evaluation function in the updated adversarial learning network is constructed according to a reconstruction error generated during training, and the updated adversarial learning network is constructed into an anomaly detection model, to perform anomaly detection on inputted detection data by the anomaly detection model, to obtain an anomaly detection result. A mode classifier is introduced to effectively resolve difficult anomaly detection when a distribution of detected data is similar to that of normal data, further improving the accuracy of anomaly detection.
公开/授权文献
信息查询
0/0