Using Graph Structures to Represent Node State in Deep Reinforcement Learning (RL)-Based Decision Tree Construction
Abstract:
In one set of embodiments, a deep reinforcement learning (RL) system can train an agent to construct an efficient decision tree for classifying network packets according to a rule set, where the training includes: identifying, by an environment of the deep RL system, a leaf node in a decision tree; computing, by the environment, a graph structure representing a state of the leaf node, the graph structure including information regarding how one or more rules in the rule set that are contained in the leaf node are distributed in a hypercube of the leaf node; communicating, by the environment, the graph structure to the agent; providing, by the agent, the graph structure as input to a graph neural network; and generating, by the graph neural network based on the graph structure, an action to be taken on the leaf node for extending the decision tree.
Information query
Patent Agency Ranking
0/0