DATA DRIFT MITIGATION IN MACHINE LEARNING FOR LARGE-SCALE SYSTEMS
Abstract:
A cloud-based service uses an offline training pipeline to categorize training data for machine learning (ML) models into various clusters. Incoming test data that is received by a data center or in a cloud environment is compared against the categorized training data to identify the appropriate ML model to assign the test data. The comparison of the test data is done in real-time using a similarity metric that takes into account spatial and temporal factors of the test data relative to the categorized training data.
Information query
Patent Agency Ranking
0/0