Task Augmentation and Self-Training for Improved Few-Shot Learning
Abstract:
Systems and methods can leverage task-specific unlabeled data to improve downstream performance in data-constrained scenarios. Given a target task, a first technique proposed herein, which can be referred to as task augmentation, uses unlabeled text from the target domain to synthesize a large amount of in-domain training data for an auxiliary task A second technique provides a self-training algorithm, where a model learns to improve itself using its predictions on unlabeled examples.
Information query
Patent Agency Ranking
0/0