RECOMMENDATION GENERATION USING MACHINE LEARNING DATA VALIDATION
Abstract:
Techniques for using machine learning model validated sensor data to generate recommendations for remediating issues in a monitored system are disclosed. A machine learning model is trained to identify correlations among sensors for a monitored system. Upon receiving current sensor data, the machine learning model identifies a subset of the current sensor data that cannot be validated. The system generates estimated values for the sensor data that cannot be validated based on the learned correlations among the sensor values. The system generates the recommendations for remediating the issues in the monitored system based on validated sensor values and the estimated sensor values.
Information query
Patent Agency Ranking
0/0