MACHINE LEARNING-BASED RADIO FREQUENCY (RF) FRONT-END CALIBRATION
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for calibrating radio frequency (RF) circuits using machine learning. One example method generally includes calibrating a first subset of RF circuit calibration parameters. Values are predicted for a second subset of RF circuit calibration parameters based on a machine learning model and the first subset of RF circuit calibration parameters. The second subset of RF circuit calibration parameters may be distinct from the first subset of RF circuit calibration parameters. At least the first subset of RF circuit calibration parameters is verified, and after the verifying, at least the first subset of RF circuit calibration parameters are written to a memory associated with the RF circuit.
Public/Granted literature
Information query
Patent Agency Ranking
0/0