CLASSIFYING USER BEHAVIOR AS ANOMALOUS
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying user behavior as anomalous. One of the methods includes obtaining user behavior data representing behavior of a user in a subject system. An initial model is generated from training data, the initial model having first characteristic features of the training data. A resampling model is generated from the training data and from multiple instances of the first representation for a test time period. A difference between the initial model and the resampling model is computed. The user behavior in the test time period is classified as anomalous based on the difference between the initial model and the resampling model.
Information query
Patent Agency Ranking
0/0