CONTRASTIVE TIME SERIES REPRESENTATION LEARNING VIA META-LEARNING
摘要:
A computer-implemented method for meta-learning is provided. The method includes receiving a training time series and labels corresponding to some of the training time series. The method further includes optimizing time series augmentations of the training time series using a time series augmentation selection process performed by a meta learner to obtain a selected augmentation from a plurality of candidate augmentations. The method also includes training a time series encoder with contrastive loss using the selected augmentation to obtain a learned time series encoder. The method additionally includes learning, by the learned time series encoder, a vector representation of another time series. The method further includes performing, by the learned time series encoder, a downstream task of label classification for at least a portion of the other time series.
信息查询
0/0