USING NEURAL NETWORKS FOR INTERPOLATING SEISMIC DATA
Abstract:
One method interpolates simulated seismic data of a coarse spatial sampling to a finer spatial sampling using a neural network. The neural network is previously trained using a set of simulated seismic data with the finer spatial sampling and a subset thereof with the coarse spatial sampling. The data is simulated using an image of the explored underground formation generated using real seismic data. The seismic dataset resulting from simulation and interpolation is used for denoising the seismic data acquired over the underground formation. Another method demigrates seismic data at a sparse density and then increases density by interpolating traces using a neural network.
Public/Granted literature
Information query
Patent Agency Ranking
0/0