FAILURE PREDICTION IN SURFACE TREATMENT PROCESSES USING
ARTIFICIAL INTELLIGENCE
摘要:
A computer-implemented method for failure classification of a surface treatment process includes receiving one or more process parameters that influence one or more failure modes of the surface treatment process and receiving sensor data pertaining to measurement of one or more process states pertaining to the surface treatment process. The method includes processing the received one or more process parameters and the sensor data by a machine learning model deployed on an edge computing device controlling the surface treatment process to generate an output indicating, in real-time, a probability of process failure via the one or more failure modes. The machine learning model is trained on a supervised learning regime based on process data and failure classification labels obtained from physics simulations of the surface treatment process in combination with historical data pertaining to the surface treatment process.
信息查询
0/0