• 专利标题: MACHINE LEARNING TECHNIQUES USING MODEL DEFICIENCY DATA OBJECTS FOR TENSOR-BASED GRAPH PROCESSING MODELS
  • 申请号: US17811229
    申请日: 2022-07-07
  • 公开(公告)号: US20240013064A1
    公开(公告)日: 2024-01-11
  • 发明人: Paul J. GoddenErik A. NystromGregory J. Boss
  • 申请人: Optum, Inc.
  • 申请人地址: US MN Minnetonka
  • 专利权人: Optum, Inc.
  • 当前专利权人: Optum, Inc.
  • 当前专利权人地址: US MN Minnetonka
  • 主分类号: G06N3/12
  • IPC分类号: G06N3/12
MACHINE LEARNING TECHNIQUES USING MODEL DEFICIENCY DATA OBJECTS FOR TENSOR-BASED GRAPH PROCESSING MODELS
摘要:
Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for generating a model deficiency data object for a tensor-based graph processing machine learning model. Certain embodiments of the present invention utilize systems, methods, and computer program products that generate a model deficiency data object for a tensor-based graph processing machine learning model using holistic graph links generated by utilizing a graph representation machine learning model.
信息查询
0/0