SNR DETECTION WITH FEW-SHOT TRAINED MODELS
Abstract:
Methods and systems for training a model include determining class prototypes of time series samples from a training dataset. A task corresponding to the time series samples is encoded using the class prototypes and a task-level configuration. A likelihood value is determined based on outputs of a time series density model, a task-class distance from a task embedding model, and a task density model. Parameters of the time series density model, the task embedding model, and the task density model are adjusted responsive to the likelihood value.
Information query
Patent Agency Ranking
0/0