Invention Publication

UNLEARNING OF RECOMMENDATION MODELS
Abstract:
The present disclosure describes techniques of performing machine unlearning in a recommendation model. An unlearning process of the recommendation model may be initiated in response to receiving a request for deleting a fraction of user data from any particular user. The recommendation model may be pre-trained to recommend content to users based at least in part on user data. Values of entries in a matrix corresponding to the fraction of user data may be configured as zero. The matrix may comprise entries denoting preferences of users with respect to content items. Confidence values associated with the fraction of user data may be configured as zero to block influence of the fraction of user data on performance of the recommendation model. The unlearning process may be implemented by performing a number of iterations until the recommendation model has converged.
Information query
Patent Agency Ranking
0/0