DATA-AWARE STORAGE TIERING AND LIFETIME DATA VALUATION FOR DEEP LEARNING
Abstract:
Systems and methods are configured to provide lifetime data valuations for a dataset that evolves across multiple machine learning training tasks by providing and updating path-dependent data valuations for data points in the dataset during each training task. A current machine learning training task may include splitting the dataset into multiple random mini-epochs and training the current machine learning model using a first random mini-epoch and an accuracy mini-epoch, which consists of high value data points from the path-dependent data valuations. The random and accuracy mini-epochs can be, during the training, iterated for a number of times during the training, while a second random mini-epoch is prefetch. During the training, the path-dependent data valuations can be updated based on data valuations during the current training and a similarity between the current machine learning model and prior trained machine learning models.
Information query
Patent Agency Ranking
0/0