Method for Training Large Language Models to Perform Query Intent Classification
Abstract:
Provided are computing systems, methods, and platforms that train query processing models, such as large language models, to perform query intent classification tasks by using retrieval augmentation and multi-stage distillation. Unlabeled training examples of queries may be obtained, and a set of the training examples may be augmented with additional feature annotations to generate augmented training examples. A first query processing model may annotate the retrieval augmented queries to generate inferred labels for the augmented training examples. A second query processing model may be trained on the inferred labels, distilling the query processing model that was trained with retrieval augmentation into a non-retrieval augmented query processing model. The second query processing model may annotate the entire set of unlabeled training examples. Another stage of distillation may train a third query processing model using the entire set of unlabeled training examples without retrieval augmentation.
Information query
Patent Agency Ranking
0/0