DUAL-SIX-TRANSISTOR (D6T) IN-MEMORY COMPUTING (IMC) ACCELERATOR SUPPORTING ALWAYS-LINEAR DISCHARGE AND REDUCING DIGITAL STEPS
Abstract:
A dual-six-transistor (D6T) in-memory computing (IMC) accelerator supporting always-linear discharge and reducing digital steps is provided. In the IMC accelerator, three effective techniques are proposed: (1) A D6T bitcell can reliably run at 0.4 V and enter a standby mode at 0.26 V, to support parallel processing of dual decoupled ports. (2) An always-linear discharge and convolution mechanism (ALDCM) not only reduces a voltage of a bit line (BL), but also keeps linear calculation throughout an entire voltage range of the BL. (3) A bypass of a bias voltage time converter (BVTC) reduces digital steps, but still keeps high energy efficiency and computing density at a low voltage. A measurement result of the IMC accelerator shows that the IMC accelerator achieves an average energy efficiency of 8918 TOPS/W (8b×8b), and an average computing density of 38.6 TOPS/mm2 (8b×8b) in a 55 nm CMOS technology.
Information query
Patent Agency Ranking
0/0