- 专利标题: Synthetic Data Generation for Machine Learning for a Cardiac Magnetic Resonance Imaging Task
-
申请号: US18056286申请日: 2022-11-17
-
公开(公告)号: US20240169699A1公开(公告)日: 2024-05-23
- 发明人: Andrei Bogdan Gheorghita , Athira Jane Jacob , Lucian Mihai Itu , Puneet Sharma
- 申请人: Siemens Healthcare GmbH
- 申请人地址: DE Erlangen
- 专利权人: Siemens Healthcare GmbH
- 当前专利权人: Siemens Healthcare GmbH
- 当前专利权人地址: DE Erlangen
- 主分类号: G06V10/774
- IPC分类号: G06V10/774 ; G06T7/00
摘要:
CMR imaging is synthesized, and/or machine learning for a CMR imaging task uses synthetic sample generation. A machine-learned model generates synthetic samples. For example, the machine-learned model generates the synthetic samples in response to input of values for two or more parameters from the group of electrocardiogram (ECG), an indication of image style, a number of slices, a pathology, a measure of heart function, sample image, and/or an indication of slice position relative to anatomy. The indication of image style may be in the form of a latent representation, which may be used as the only input or one of multiple inputs. These inputs provide for better control over generation of synthetic samples, providing for greater variance and breadth of samples then used to machine train for a CMR task.
信息查询