Generating Synthetic Heterogenous Time-Series Data
Abstract:
The present disclosure provides a generative modeling framework for generating highly realistic and privacy preserving synthetic records for heterogenous time-series data, such as electronic health record data, financial data, etc. The generative modeling framework is based on a two-stage model that includes sequential encoder-decoder networks and generative adversarial networks (GANs).
Information query
Patent Agency Ranking
0/0