LEARNING DIVERSE SKILLS FOR TASKS USING SEQUENTIAL LATENT VARIABLES FOR ENVIRONMENT DYNAMICS
Abstract:
This specification relates to methods for controlling agents to perform actions according to a goal (or option) comprising a sequence of local goals (or local options) and corresponding methods for training. As discussed herein, environment dynamics may be modelled sequentially by sampling latent variables, each latent variable relating to a local goal and being dependent on a previous latent variable. These latent variables are used to condition an action-selection policy neural network to select actions according to the local goal. This allows the agents to reach more diverse states than would be possible through a fixed latent variable or goal, thereby encouraging exploratory behavior. In addition, specific methods described herein model the sequence of latent variables through a simple linear and recurrent relationship that allows the system to be trained more efficiently. This avoids the need to learn a state-dependent higher level policy for selecting the latent variables which can be difficult to train in practice.
Information query
Patent Agency Ranking
0/0