APPARATUS FOR NON-DETERMINISTIC FUTURE STATE PREDICTION USING TIME SERIES DATA AND OPERATION METHOD THEREOF
Abstract:
Disclosed is an apparatus, which includes a preprocessor that generates raw data, generates preprocessed time series data, and generates preprocessed learning data, and a learner that receives the preprocessed learning data as input data and trains a prediction model such that the similarity between a first future state predicted using the input data and a second future state predicted using data included in the same cluster as the input data increases and such that the similarity between the first future state and a third future state predicted using data included in a different cluster from the input data decreases, and the prediction model is a machine learning model for predicting a future state of the time series data at an arbitrary time point.
Information query
Patent Agency Ranking
0/0