MACHINE LEARNING RISK DETERMINATION SYSTEM FOR TREE BASED MODELS
Abstract:
The present disclosure describes systems and methods for determining correlation codes for tree-based decisioning models. In one embodiment, a method for determining correlation codes in a tree-based decision model includes: assigning each decision node in a tree-based decision model to a correlation code; initializing a risk sum for each correlation code; calculating, for all decision nodes in the tree-based decision model, a difference in risk between child nodes and respective parent nodes; updating the risk sum for each correlation code associated with the decision node used in the decision for the node; determining the feature with the highest risk sum; and determining the correlation code associated with the determined decision node.
Information query
Patent Agency Ranking
0/0