SYSTEM AND METHOD FOR IDENTIFYING AND RESOLVING PERFORMANCE ISSUES OF AUTOMATED COMPONENTS
Abstract:
Systems and methods are described for identifying and resolving performance issues of automated components. The automated components are segmented into groups by applying a K-means clustering algorithm thereto based on segmentation feature values respectively associated therewith, wherein an initial set of centroids for the K-means clustering algorithm is selected by applying a set of context rules to the automated components. Then, for each group, a performance ranking is generated based at least on a set of performance feature values associated with each of the automated components in the group and a feature importance value for each of the performance features. The feature importance values are determined by training a machine learning based classification model to classify automated components into each of the groups, wherein the training is performed based on the respective performance feature values of the automated components and the respective groups to which they were assigned.
Information query
Patent Agency Ranking
0/0