Multimodal Learning from Structured and Unstructured Data
Abstract:
Aspects of the disclosure are directed to a multimodal processing system for processing both structured and un-structured data. Real-world data is not always consistent in form or content. The multimodal processing system includes model that can be trained to account for this characteristic of real-world data, by selectively masking data of different modalities during pretraining to learn outputs that are the same or comparable between the masked and un-masked inputs. The model is trained according to modality-specific masking objectives computed for each modality of data and joint modality similarity-based masking objectives for a joint representation of the data across all modalities. The system provides consistent and accurate input, even when input data may have substantial portions of data from different modalities missing. Cross-modal relationships in data are reinforced by the model as different portions of data are masked, contributing to an overall increase in model accuracy versus other approaches.
Information query
Patent Agency Ranking
0/0