发明授权
US06474323B1 Optimized lambda and compression temperature control for compression ignition engines 有权
压缩式点火发动机优化的λ和压缩温度控制

Optimized lambda and compression temperature control for compression ignition engines
摘要:
The performance of a compression ignition internal combustion engine is improved by optimizing excess air ratio (lambda) and/or intake air charge temperature (ACT) on a full time, fall range basis. The basic procedure is to first determine the desired or optimum lambda and then to control ACT and intake manifold absolute pressure (MAP) to maintain them at the optimum values for the fuel quantity required at a particular operating point. This approach allows control of both temperature and pressure of the air entering the engine. Full range control requires that lambda and ACT be controlled both upward and downward to achieve optimal engine performance. Control of both lambda and ACT is further enhanced through the use of a supercharger with adjustable input power installed in series with a standard turbocharger compressor of the engine. Supercharger control may if desired be supplemented with turbo air bypass (TAB) control, turbocharger variable area nozzle or wastegate, turboexpander control, and intake and exhaust valve control including skip fire of both fuel and air. The essence of optimized lambda control is to measure the physical properties of the working fluid in the intake manifold, exhaust manifold, or both, compute the actual value of lambda, and compare that actual value with an optimum value for the prevailing engine operating conditions. This comparison yields an error signal which is then used to control the magnitude of the required adjustment in turbocharger pressure or other engine operating parameter.
信息查询
0/0