发明授权
- 专利标题: Laplacian principal components analysis (LPCA)
- 专利标题(中): 拉普拉斯主成分分析(LPCA)
-
申请号: US11871764申请日: 2007-10-12
-
公开(公告)号: US08064697B2公开(公告)日: 2011-11-22
- 发明人: Deli Zhao , Zhouchen Lin , Xiaoou Tang
- 申请人: Deli Zhao , Zhouchen Lin , Xiaoou Tang
- 申请人地址: US WA Redmond
- 专利权人: Microsoft Corporation
- 当前专利权人: Microsoft Corporation
- 当前专利权人地址: US WA Redmond
- 代理机构: Lee & Hayes, PLLC
- 主分类号: G06K9/00
- IPC分类号: G06K9/00 ; G06T7/00
摘要:
Systems and methods perform Laplacian Principal Components Analysis (LPCA). In one implementation, an exemplary system receives multidimensional data and reduces dimensionality of the data by locally optimizing a scatter of each local sample of the data. The optimization includes summing weighted distances between low dimensional representations of the data and a mean. The weights of the distances can be determined by a coding length of each local data sample. The system can globally align the locally optimized weighted scatters of the local samples and provide a global projection matrix. The LPCA improves performance of such applications as face recognition and manifold learning.
公开/授权文献
- US20090097772A1 Laplacian Principal Components Analysis (LPCA) 公开/授权日:2009-04-16
信息查询