发明授权
US08065244B2 Neural-network based surrogate model construction methods and applications thereof 有权
基于神经网络的代理模型构建方法及应用

Neural-network based surrogate model construction methods and applications thereof
摘要:
Various neural-network based surrogate model construction methods are disclosed herein, along with various applications of such models. Designed for use when only a sparse amount of data is available (a “sparse data condition”), some embodiments of the disclosed systems and methods: create a pool of neural networks trained on a first portion of a sparse data set; generate for each of various multi-objective functions a set of neural network ensembles that minimize the multi-objective function; select a local ensemble from each set of ensembles based on data not included in said first portion of said sparse data set; and combine a subset of the local ensembles to form a global ensemble. This approach enables usage of larger candidate pools, multi-stage validation, and a comprehensive performance measure that provides more robust predictions in the voids of parameter space.
信息查询
0/0