Invention Grant
US08237296B2 Selective UV-Ozone dry etching of anti-stiction coatings for MEMS device fabrication 有权
用于MEMS器件制造的抗静电涂层的选择性UV-臭氧干法蚀刻

Selective UV-Ozone dry etching of anti-stiction coatings for MEMS device fabrication
Abstract:
Organic anti-stiction coatings such as, for example, hydrocarbon and fluorocarbon based self-assembled organosilanes and siloxanes applied either in solvent or via chemical vapor deposition, are selectively etched using a UV-Ozone (UVO) dry etching technique in which the portions of the organic anti-stiction coating to be etched are exposed simultaneously to multiple wavelengths of ultraviolet light that excite and dissociate organic molecules from the anti-stiction coating and generate atomic oxygen from molecular oxygen and ozone so that the organic molecules react with atomic oxygen to form volatile products that are dissipated, resulting in removal of the exposed portions of the anti-stiction coating. A hybrid etching process using heat followed by UVO exposure may be used. A shadow mask (e.g., of glass or quartz), a protective material layer, or other mechanism may be used to selective expose the portions of the anti-stiction coating to be UVO etched. Such selective UVO etching may be used, for example, to expose wafer bond lines prior to wafer-to-wafer bonding in order to increase bond shear and adhesion strength, to expose bond pads in preparation for electrical or other connections, or for general removal of anti-stiction coating materials from metal or other material surfaces. One specific embodiment uses two wavelengths of ultraviolet light, one at around 184.9 nm and the other at around 253.7 nm.
Information query
Patent Agency Ranking
0/0