发明授权
US08577670B2 Adaptive construction of a statistical language model 有权
统计语言模型的自适应构建

Adaptive construction of a statistical language model
摘要:
A statistical language model (SLM) may be iteratively refined by considering N-gram counts in new data, and blending the information contained in the new data with the existing SLM. A first group of documents is evaluated to determine the probabilities associated with the different N-grams observed in the documents. An SLM is constructed based on these probabilities. A second group of documents is then evaluated to determine the probabilities associated with each N-gram in that second group. The existing SLM is then evaluated to determine how well it explains the probabilities in the second group of documents, and a weighting parameter is calculated from that evaluation. Using the weighting parameter, a new SLM is then constructed as a weighted average of the existing SLM and the new probabilities.
公开/授权文献
信息查询
0/0