发明授权
US09135241B2 System and method for learning latent representations for natural language tasks 有权
学习自然语言任务的潜在表征的系统和方法

System and method for learning latent representations for natural language tasks
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for learning latent representations for natural language tasks. A system configured to practice the method analyzes, for a first natural language processing task, a first natural language corpus to generate a latent representation for words in the first corpus. Then the system analyzes, for a second natural language processing task, a second natural language corpus having a target word, and predicts a label for the target word based on the latent representation. In one variation, the target word is one or more word such as a rare word and/or a word not encountered in the first natural language corpus. The system can optionally assigning the label to the target word. The system can operate according to a connectionist model that includes a learnable linear mapping that maps each word in the first corpus to a low dimensional latent space.
信息查询
0/0