Invention Grant
US09147129B2 Score fusion and training data recycling for video classification 有权
分数融合和训练数据回收用于视频分类

Score fusion and training data recycling for video classification
Abstract:
Multiple classifiers can be applied independently to evaluate images or video. Where there are heavily imbalanced class distributions, a local expert forest model for meta-level score fusion for event detection can be used. Performance variations of classifiers in different regions of a score space can be adapted. Multiple pairs of experts based on different partitions, or “trees,” can form a “forest,” balancing local adaptivity and over-fitting. Among ensemble learning methods, stacking with a meta-level classifier can be used to fuse an output of multiple base-level classifiers to generate a final score. A knowledge-transfer framework can reutilize the base-training data for learning the meta-level classifier. By recycling the knowledge obtained during a base-classifier-training stage, efficient use can be made of all available information, such as can be used to achieve better fusion and better overall performance.
Public/Granted literature
Information query
Patent Agency Ranking
0/0