High throughput cooled ion implantation system and method
Abstract:
An ion implantation system has a process chamber having a process environment, and an ion implantation apparatus configured to implant ions into a workpiece supported by a chuck within the process chamber. A load lock chamber isolates the process (vacuum) environment from an atmospheric environment, wherein a load lock workpiece support supports the workpiece therein. An isolation chamber is coupled to the process chamber with a pre-implant cooling environment defined therein. An isolation gate valve selectively isolates the pre-implant cooling environment from the process environment wherein the isolation chamber comprises a pre-implant cooling workpiece support for supporting and cooling the workpiece. The isolation gate valve is the only access path for the workpiece to enter and exit the isolation chamber. A pressurized gas selectively pressurizes the pre-implant cooling environment to a pre-implant cooling pressure that is greater than the process pressure for expeditious cooling of the workpiece. A workpiece transfer arm transfer the workpiece between the load lock chamber, isolation chamber, and chuck. A controller controls the workpiece transfer arm selectively cools the workpiece to a pre-implant cooling temperature in the isolation chamber at the pre-implant cooling pressure via a control of the isolation gate valve, pre-implant cooling workpiece support, and pressurized gas source.
Public/Granted literature
Information query
Patent Agency Ranking
0/0