• 专利标题: Method for improving efficiency in an optimizing predictive model using stochastic gradient descent
  • 申请号: US14010436
    申请日: 2013-08-26
  • 公开(公告)号: US09613316B2
    公开(公告)日: 2017-04-04
  • 发明人: Georges Harik
  • 申请人: Georges Harik
  • 代理机构: VLP Law Group LLP
  • 代理商 Edward C Kwok
  • 主分类号: G06K9/00
  • IPC分类号: G06K9/00 G06N99/00 G06N3/08
Method for improving efficiency in an optimizing predictive model using stochastic gradient descent
摘要:
A method optimizes a predictive computation model efficiently. The method includes (i) selecting model parameters that are expected to take real values within a one-sided predetermined range; and (ii) iteratively: (a) receiving a set of input values; (b) executing the computation model based on the input values; (c) updating the values of the model parameters to minimize a loss function; and (d) examining each of the model parameters, such that, when the examined model parameter attains or moves past a value that is idempotent to the computation model, removing the model parameter from the computation model. In one embodiment, the predetermined range is either the range between a predetermined positive real value and positive infinity or the range between a predetermined negative real value and negative infinity. The predetermined positive real value or the predetermined negative real value may be an idempotent value to the model computation.
信息查询
0/0