Deep neural net based filter prediction for audio event classification and extraction
Abstract:
Disclosed is a feature extraction and classification methodology wherein audio data is gathered in a target environment under varying conditions. From this collected data, corresponding features are extracted, labeled with appropriate filters (e.g., audio event descriptions), and used for training deep neural networks (DNNs) to extract underlying target audio events from unlabeled training data. Once trained, these DNNs are used to predict underlying events in noisy audio to extract therefrom features that enable the separation of the underlying audio events from the noisy components thereof.
Information query
Patent Agency Ranking
0/0