-
公开(公告)号:CN109674469A
公开(公告)日:2019-04-26
申请号:CN201910002013.5
申请日:2019-01-02
Applicant: 哈尔滨工业大学
CPC classification number: A61B5/048 , A61B5/4094 , A61B5/725 , A61B5/7257 , A61B5/7267
Abstract: 基于CNN模型的癫痫发作预警算法,是一种基于深度学习的早期癫痫发作预警方法。该发明提出了一种基于CNN模型的癫痫发作预警算法,旨在实现一种癫痫发作预警系统。该算法首先对在IEEG监测下的癫痫患者颅内脑电图(EEG)数据进行预处理,然后基于CNN模型并通过Softmax,Minmax,和Median来标准化预测原始结果,分析基于CNN模型提取癫痫患者EGG数据的ROC曲线和灵敏度特异性分析曲线,得到基于CNN模型的原始预测AUC值。该算法的原始预测AUC值为0.790,也就是说该算法的CNN模型已经学到了预测癫痫的关键信息,能够准确预测基于脑电数据集的癫痫发作时或癫痫发作前状态变化。该算法可用于控制癫痫发作,并可提醒患者何时需要注意驾驶或游泳等潜在危险的活动。