-
公开(公告)号:CN103679731B
公开(公告)日:2016-12-07
申请号:CN201310700137.3
申请日:2013-12-18
申请人: 哈尔滨工业大学深圳研究生院
IPC分类号: G06T7/00
摘要: 本发明提供了一种基于文档图像的圆弧分割方法,包括如下步骤:步骤1)确定圆弧的参数;步骤2)利用对称轴校正步骤1)中的参数;步骤3)判断是完整圆还是部分圆。该方法能提高文档图像的矢量化效率。为纸质文档的数字化,电子文档的管理,以及根据二维图纸构建三维模型提供强有力的支持。
-
公开(公告)号:CN103761519A
公开(公告)日:2014-04-30
申请号:CN201310719654.5
申请日:2013-12-20
申请人: 哈尔滨工业大学深圳研究生院
摘要: 本发明提供了一种基于自适应校准的非接触式视线追踪方法,结合BFS算法、图像几何特征和灰度特征的光斑特征提取方法,将光斑与对应的光源进行精确匹配;利用一维边缘检测算子和最小二乘椭圆拟合进行循环拟合,去除噪点,直到椭圆中心固定的拟合方法,最终得到精确的瞳孔中心;并提出一种动态自适应的校准方法,有效提高了现有的空间映射模型精度。
-
公开(公告)号:CN103530618A
公开(公告)日:2014-01-22
申请号:CN201310501357.3
申请日:2013-10-23
申请人: 哈尔滨工业大学深圳研究生院
摘要: 本发明提供了一种基于角膜反射的非接触式视线追踪方法,步骤1:人眼定位;步骤2:计算光斑坐标;步骤3:瞳孔精确定位;步骤4:空间映射:根据计算出的屏幕上四个光斑和瞳孔中心坐标,利用射影几何中的交比不变原理进行空间坐标的映射。本发明提出的技术方案不需要配戴其它设备,大大降低了对使用者的限制;提出一种新的瞳孔边缘拟合方案,循环拟合剔除假点,最终得到精确的瞳孔中心,提高了映射的精度。本发明与现有的相关研究相比,在精度上有了较大的提升。
-
公开(公告)号:CN103761519B
公开(公告)日:2017-05-17
申请号:CN201310719654.5
申请日:2013-12-20
申请人: 哈尔滨工业大学深圳研究生院
摘要: 本发明提供了一种基于自适应校准的非接触式视线追踪方法,结合BFS算法、图像几何特征和灰度特征的光斑特征提取方法,将光斑与对应的光源进行精确匹配;利用一维边缘检测算子和最小二乘椭圆拟合进行循环拟合,去除噪点,直到椭圆中心固定的拟合方法,最终得到精确的瞳孔中心;并提出一种动态自适应的校准方法,有效提高了现有的空间映射模型精度。
-
公开(公告)号:CN103679731A
公开(公告)日:2014-03-26
申请号:CN201310700137.3
申请日:2013-12-18
申请人: 哈尔滨工业大学深圳研究生院
IPC分类号: G06T7/00
摘要: 本发明提供了一种基于文档图像的圆弧分割方法,包括如下步骤:步骤1)确定圆弧的参数;步骤2)利用对称轴校正步骤1)中的参数;步骤3)判断是完整圆还是部分圆。该方法能提高文档图像的矢量化效率。为纸质文档的数字化,电子文档的管理,以及根据二维图纸构建三维模型提供强有力的支持。
-
公开(公告)号:CN103310152B
公开(公告)日:2016-12-28
申请号:CN201310138433.9
申请日:2013-04-19
申请人: 哈尔滨工业大学深圳研究生院
IPC分类号: G06F21/56
摘要: 本发明提供了一种基于系统虚拟化技术的内核态Rootkit检测方法,本发明通过对Rootkit原理与系统调用和LKM进行深入分析,得到内核态Rootkit隐藏自身模块信息这一行为特点。并针对这一特点,利用设计了基于视图交叉验证的Rootkit检测方法。本发明通过对Xen内核进行更改以截获系统调用,从而构建可信视图。利用目标客户机的用户态工具构建被感染视图。通过对比可信视图和被感染视图发现隐藏的模块。
-
公开(公告)号:CN103310152A
公开(公告)日:2013-09-18
申请号:CN201310138433.9
申请日:2013-04-19
申请人: 哈尔滨工业大学深圳研究生院
IPC分类号: G06F21/56
摘要: 本发明提供了一种基于系统虚拟化技术的内核态Rootkit检测方法,本发明通过对Rootkit原理与系统调用和LKM进行深入分析,得到内核态Rootkit隐藏自身模块信息这一行为特点。并针对这一特点,利用设计了基于视图交叉验证的Rootkit检测方法。本发明通过对Xen内核进行更改以截获系统调用,从而构建可信视图。利用目标客户机的用户态工具构建被感染视图。通过对比可信视图和被感染视图发现隐藏的模块。
-
公开(公告)号:CN103020185A
公开(公告)日:2013-04-03
申请号:CN201210505053.X
申请日:2012-11-30
申请人: 哈尔滨工业大学深圳研究生院
摘要: 本发明提供了一种多序列标注问题的联合识别方法,包括以下步骤:步骤1:针对任务I,只采用基本特征生成分类器A,针对任务II,只采用基本特征生成分类器B;步骤2:针对任务I,采用任务I的基本特征和任务II的结果带来的特征生成分类器A2,针对任务II,采用任务II的基本特征和任务I的结果带来的特征生成分类器B2;步骤3:使用集成识别算法将分类器B和B2集成为CB,将分类器A和A2集成为CA;步骤4:重复步骤2和3,直到两个任务的准确率达到最大值。本发明弥补了序列标注任务单独识别时不能从其他任务得到有用信息的缺点,使得多个任务之间有效的交换信息,并通过分类器集成,提高整个任务的准确性。
-
-
-
-
-
-
-