-
公开(公告)号:CN111353995B
公开(公告)日:2023-03-28
申请号:CN202010240762.4
申请日:2020-03-31
Applicant: 成都信息工程大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于生成对抗网络的宫颈单细胞图像数据生成方法,包括以下步骤:S1、准备包含正常细胞图像和异常细胞图像的宫颈单细胞数据集,并对宫颈单细胞数据集进行预处理;S2、模型设计:以传统的生成对抗网络为基础,在生成对抗网络模型过程中使用约束条件指导模型生成指定类别的宫颈单细胞图像。本发明的生成对抗网络由两部分组成:生成器用于捕获训练数据的分布,判别器用于判断输入数据是来自真实数据还是生成数据。模型通过这种竞争的学习方式,使生成对抗网络可以生成逼近真实的图像,提升模型表现。本发明可以通过生成器在消耗很少的时间和人力的前提下获得大量的有效数据,可以通过扩大数据集获得更高的疾病检测准确率。
-
公开(公告)号:CN114569101A
公开(公告)日:2022-06-03
申请号:CN202210222186.X
申请日:2022-03-09
Applicant: 成都信息工程大学
Abstract: 本发明提供了一种非接触式心率检测方法、装置和电子设备,其中,该方法包括:通过预设摄像头,采集包含有目标对象的目标图像;基于目标图像,确定感兴趣区域;对感兴趣区域对应的图像区域进行颜色空间转换,得到指定颜色空间下的图像信号;对指定颜色空间下的图像信号进行信号提取,得到血液容积脉冲信号,该血液容积脉冲信号中包含有信号的时频信息;基于血液容积脉冲信号确定目标对象的心率。该方式通过摄像头实时采集目标对象的图像,并对该图像进行时频分析处理,得到心率值,从而实现了非接触式心率检测,并满足在实际场景中的应用,能够在自然光状态下对心率进行检测,具有操作便捷、设备要求低、受环境制约小、实时性强和准确度高等特点。
-
公开(公告)号:CN111353995A
公开(公告)日:2020-06-30
申请号:CN202010240762.4
申请日:2020-03-31
Applicant: 成都信息工程大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于生成对抗网络的宫颈单细胞图像数据生成方法,包括以下步骤:S1、准备包含正常细胞图像和异常细胞图像的宫颈单细胞数据集,并对宫颈单细胞数据集进行预处理;S2、模型设计:以传统的生成对抗网络为基础,在生成对抗网络模型过程中使用约束条件指导模型生成指定类别的宫颈单细胞图像。本发明的生成对抗网络由两部分组成:生成器用于捕获训练数据的分布,判别器用于判断输入数据是来自真实数据还是生成数据。模型通过这种竞争的学习方式,使生成对抗网络可以生成逼近真实的图像,提升模型表现。本发明可以通过生成器在消耗很少的时间和人力的前提下获得大量的有效数据,可以通过扩大数据集获得更高的疾病检测准确率。
-
公开(公告)号:CN110909396A
公开(公告)日:2020-03-24
申请号:CN201910972860.4
申请日:2019-10-14
Abstract: 本发明公开了一种计算机信息安全保护装置,具体涉及计算机设备技术领域,包括桌板,所述桌板底部两侧分别固定设置有第一支撑柜和第二支撑柜,所述桌板顶部设置有显示屏,所述显示屏输出端连接有主机,所述主机设置在第二支撑柜内部,所述第二支撑柜外侧设置有主机防护机构,所述桌板底部设置有键盘防护机构。本发明通过设置有主机防护机构和键盘防护机构,可以通过防护门上的按键槽直接按动主机的开机键,从而不需要打开防护门便可以开机,提高了开机效率,通过第一指纹密码锁和第二指纹密封锁可以有效对主机和键盘进行防护,与现有技术相比,可以有效对键盘和主机进行防护,且自动化程度高,操作便捷,且开机不用进行验证,提高操作效率。
-
公开(公告)号:CN112949533B
公开(公告)日:2022-04-22
申请号:CN202110276094.5
申请日:2021-03-15
Applicant: 成都信息工程大学
IPC: G06K9/00
Abstract: 本发明公开了一种基于相对小波包熵脑网络和改进版lasso的运动想象脑电识别方法,包括:根据功率谱密度计算R²图,得到最大的频率波段并进行带通滤波;通过小波包方法对脑电信号的细节系数和近似系统进行提取并计算,得到小波包能量熵特征,并通过小波包能量熵值构建脑功能网络,提取脑网络的拓扑特征;并根据数据预处理中SCSP算法,得到方差特征;将三种特征进行融合,得到较高维度的特征矩阵;通过互信息和相关性的Lasso方法并结合Relief‑f算法进行特征选择,筛选出较小维度的特征矩阵。本发明不仅提取时空域特征,也将脑网络的拓扑特征一并提取,保留更多脑电特征信息;并结合互信息和相关性的Lasso方法和Relief‑f算法进行特征筛选,使特征选择出的特征更优秀。
-
公开(公告)号:CN112949533A
公开(公告)日:2021-06-11
申请号:CN202110276094.5
申请日:2021-03-15
Applicant: 成都信息工程大学
IPC: G06K9/00
Abstract: 本发明公开了一种基于相对小波包熵脑网络和改进版lasso的运动想象脑电识别方法,包括:根据功率谱密度计算R²图,得到最大的频率波段并进行带通滤波;通过小波包方法对脑电信号的细节系数和近似系统进行提取并计算,得到小波包能量熵特征,并通过小波包能量熵值构建脑功能网络,提取脑网络的拓扑特征;并根据数据预处理中SCSP算法,得到方差特征;将三种特征进行融合,得到较高维度的特征矩阵;通过互信息和相关性的Lasso方法并结合Relief‑f算法进行特征选择,筛选出较小维度的特征矩阵。本发明不仅提取时空域特征,也将脑网络的拓扑特征一并提取,保留更多脑电特征信息;并结合互信息和相关性的Lasso方法和Relief‑f算法进行特征筛选,使特征选择出的特征更优秀。
-
公开(公告)号:CN111797674B
公开(公告)日:2022-05-10
申请号:CN202010278235.2
申请日:2020-04-10
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于特征融合和粒子群优化算法的MI脑电信号识别方法,包括以下步骤:S1、采集MI脑电信号,并对采集到的MI脑电信号进行带通滤波,随后通过小波软阈值法进行去噪操作,并提取脑电特征信号;S2、采用PSO‑RF对脑电特征信号进行特征筛选。本发明结合了带通滤波、小波去噪、通道筛选、特征提取、特征融合、特征选择以及模式分类,对这七部分进行了有效的整合,最终得到的集成分类器能够达到98.34%的平均正确率,且AUC值和F‑score也都表现优异,因此能够达到精确运动想象分类的目的。
-
公开(公告)号:CN111797674A
公开(公告)日:2020-10-20
申请号:CN202010278235.2
申请日:2020-04-10
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于特征融合和粒子群优化算法的MI脑电信号识别方法,包括以下步骤:S1、采集MI脑电信号,并对采集到的MI脑电信号进行带通滤波,随后通过小波软阈值法进行去噪操作,并提取脑电特征信号;S2、采用PSO-RF对脑电特征信号进行特征筛选。本发明结合了带通滤波、小波去噪、通道筛选、特征提取、特征融合、特征选择以及模式分类,对这七部分进行了有效的整合,最终得到的集成分类器能够达到98.34%的平均正确率,且AUC值和F-score也都表现优异,因此能够达到精确运动想象分类的目的。
-
公开(公告)号:CN113243924A
公开(公告)日:2021-08-13
申请号:CN202110544789.7
申请日:2021-05-19
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于脑电信号通道注意力卷积神经网络的身份识别方法,包括以下步骤:S1、从情感脑电数据库中选择不同通道的EEG信号作为原始信号;S2、利用带通滤波器去除原始信号中的眼电伪迹信号以及工频干扰信号,得到纯净的情感脑电信号;S3、将预处理之后的情感脑电信号输入深度学习身份识别模型中,利用深度学习算法对情感脑电信号进行身份识别。本发明选用了情感EEG信号进行身份识别,情感EEG易于获取,身份识别方法更具有普适性和泛化性。本发明缩短了前层和后层之间连接的神经元数量,减轻了梯度消失问题,加强特征传播和减少网络参数更有效的利用了不同情感状态的EEG信号特征,从而有效的进行情感脑电信号的身份识别。
-
公开(公告)号:CN110909396B
公开(公告)日:2020-08-21
申请号:CN201910972860.4
申请日:2019-10-14
Abstract: 本发明公开了一种计算机信息安全保护装置,具体涉及计算机设备技术领域,包括桌板,所述桌板底部两侧分别固定设置有第一支撑柜和第二支撑柜,所述桌板顶部设置有显示屏,所述显示屏输出端连接有主机,所述主机设置在第二支撑柜内部,所述第二支撑柜外侧设置有主机防护机构,所述桌板底部设置有键盘防护机构。本发明通过设置有主机防护机构和键盘防护机构,可以通过防护门上的按键槽直接按动主机的开机键,从而不需要打开防护门便可以开机,提高了开机效率,通过第一指纹密码锁和第二指纹密封锁可以有效对主机和键盘进行防护,与现有技术相比,可以有效对键盘和主机进行防护,且自动化程度高,操作便捷,且开机不用进行验证,提高操作效率。
-
-
-
-
-
-
-
-
-