-
公开(公告)号:CN109902231A
公开(公告)日:2019-06-18
申请号:CN201910132973.3
申请日:2019-02-22
申请人: 新疆大学
IPC分类号: G06F16/9535
摘要: 本发明涉及线上学习资源推荐领域,尤其涉及一种基于CBOW模型的学习资源推荐方法。步骤1、收集学习者的历史学习行为,将所有学习行为添加进空白词典来建立学习行为词典;步骤2、由学习行为词典训练CBOW模型得到学习行为间的相似度;步骤3、由训练完成的结果预测学习者未来的行为,得出候选列表一;步骤4、基于学习者对学习资源的评分,采用传统推荐算法中的协同过滤算法进行预测,得出候选列表二;步骤5、根据相同学习者合并两个候选列表,得出最终的项目推荐列表。本发明使用CBOW来表示学习历史行为中学习内容的知识序列,并使用这些特征来计算项目之间的相似性,克服了传统推荐系统中资源序列关系被忽视的问题。
-
公开(公告)号:CN109885748A
公开(公告)日:2019-06-14
申请号:CN201910132455.1
申请日:2019-02-22
申请人: 新疆大学
IPC分类号: G06F16/951 , G06F16/9535 , G06F16/33 , G06F16/36
摘要: 本发明涉及用户兴趣点预测及相关项目推荐技术领域,尤其涉及一种基于语意特征的优化推荐方法。该方法包括以下步骤:步骤1,收集项目信息,将其添加到空白词典建立项目词典;步骤2,通过Word2vec模型提取项目语意特征,计算项目间的相似度;步骤3,根据项目间的相似度预测用户感兴趣的项目,应用Top-N推荐算法得出推荐的项目列表。本发明使用Word2vec技术提取语意特征,并使用这些特征来计算项目之间的相似性,克服了传统推荐系统中项目内容语意特征被忽视的问题。本发明基于语意特征进行项目推荐,相比传统推荐算法,本方法推荐的准确性更高。
-