一种水平井低温流体分级致裂方法

    公开(公告)号:CN111980651A

    公开(公告)日:2020-11-24

    申请号:CN202010721704.3

    申请日:2020-07-24

    摘要: 本发明公开了一种水平井低温流体分级致裂方法,先采用射孔枪预制出三个裂缝区,然后通过水管注水使水压封堵器充起,从而形成三个密封压裂室;向三个密封压裂室内注满过冷水,最后将低温流体依次流经三个密封压裂室内的内螺纹换热管和外螺纹换热管,在低温流体流经各个密封压裂室时,各个密封压裂室内的过冷水与低温流体发生热交换,此时过冷水的温度快速下降,使水相变成冰体积增大,从而利用其冰胀力对各个密封压裂室进行压裂,持续一定时间后,停止并多次循环,完成过冷水冰胀致裂过程;不仅能有效保证煤岩体的致裂效果及降低水力压裂所需的高压,而且由于过冷水无化学剂添加,因此泄漏后不会对周围环境造成污染。

    一种上向钻孔低温流体分级致裂方法

    公开(公告)号:CN111980650A

    公开(公告)日:2020-11-24

    申请号:CN202010721670.8

    申请日:2020-07-24

    摘要: 本发明公开了一种上向钻孔低温流体分级致裂方法,先采用射孔枪预制出三个裂缝区,然后通过水管注水使水压封堵器充起,从而形成三个密封压裂室;向三个密封压裂室内依次注满过冷水,最后将低温流体依次流经三个密封压裂室内的内螺纹换热管和外螺纹换热管,在低温流体流经各个密封压裂室时,各个密封压裂室内的过冷水与低温流体发生热交换,此时过冷水的温度快速下降,使水相变成冰体积增大,从而利用其冰胀力对各个密封压裂室进行压裂,持续一定时间后,停止并多次循环,完成过冷水冰胀致裂过程;不仅能有效保证煤岩体的致裂效果及降低水力压裂所需的高压,而且由于过冷水无化学剂添加,因此泄漏后不会对周围环境造成污染。

    一种用于上向钻孔低温流体压裂的模拟试验系统及方法

    公开(公告)号:CN111894550A

    公开(公告)日:2020-11-06

    申请号:CN202010581159.2

    申请日:2020-06-23

    IPC分类号: E21B47/00 E21B43/26

    摘要: 本发明公开了一种用于上向钻孔低温流体压裂的模拟试验系统及方法,包括真三轴加载装置、数据监测装置和低温流体注入装置,真三轴加载装置能对试样在三个方向上独立施加预应力,低温流体注入装置对上向钻孔内注入低温流体,并能将钻孔内气化的低温流体通过负压作用及时排出,从而使上向钻孔内注满低温流体,低温流体充分作用于上向钻孔壁进行低温流体压裂;数据监测装置能从低温流体注入开始对低温流体压裂全过程进行监测,从而实现监测低温流体压裂上向钻孔全过程的气压、温度、声发射和相变气体排出流量的变化情况,为后续研究提供数据基础;另外为了保证试验过程的安全性,通过安全泄压阀防止上向钻孔内的气压过高导致试样发生爆炸的情况。

    一种利用液氮-热气冷热循环冲击的高效增透煤体方法

    公开(公告)号:CN111075420A

    公开(公告)日:2020-04-28

    申请号:CN201911325797.1

    申请日:2019-12-20

    IPC分类号: E21B43/26 E21B43/24 E21F7/00

    摘要: 本发明公开了一种利用液氮-热气冷热循环冲击的高效增透煤体方法,将液氮注入并气化吸热使煤体温度快速降低,煤体内的水分结冰膨胀对煤体施加结冰膨胀力致裂;同时气化后的氮气体积快速膨胀对煤体施加气体膨胀力致裂,钻孔内的气压快速增大,氮气经过排气管排出;然后停止液氮注入后,液氮在穿层钻孔内持续气化膨胀,对煤体施加气体膨胀力致裂,气化后的氮气回流回收;便于后续的重复使用;使热蒸气注入,使其对煤体施加气体冲击力致裂,同时使煤体温度快速升温利用温差对煤体致裂;然后热蒸气排出穿层钻孔,从而降低穿层钻孔内的气压使热蒸气能持续注入;如此重复循环,进行冷热交替对煤体进行冲击;从而有效缩短增透时间并保证增透效果。

    一种流态化瓦斯抽采监测方法

    公开(公告)号:CN110984962A

    公开(公告)日:2020-04-10

    申请号:CN201911372116.7

    申请日:2019-12-27

    摘要: 一种流态化瓦斯抽采监测方法,适用于煤矿井下使用。首先向深部低渗煤层钻取水平钻井、监测钻井和瓦斯抽采钻井,利用液态CO2相变致裂技术破碎煤体;然后将多功能组配装置随可弯曲铜管送入水平钻井设计位置,钻井封闭后启动空气泵将空气按照设计流速注入煤层,将装有SF6示踪气体和探测器的容器送入监测钻井,通过实时监测水平钻井范围内即时温度、气体浓度和压力、及SF6气体的含量和变化,推算出煤体的阴燃程度及区域范围;综合煤体温度及产生的气体浓度变化,根据相关抽采参数评估瓦斯的抽采效率。该系统监测精准,应用方便,可大大提高瓦斯抽采的监测效率。

    一种煤的全孔径分布测试方法

    公开(公告)号:CN114778405B

    公开(公告)日:2024-11-08

    申请号:CN202210327692.5

    申请日:2022-03-30

    摘要: 本发明公开了一种煤的全孔径分布测试方法,通过FIB‑SEM重构模型、蒙特卡罗随机游走算法模拟T2谱图、核磁共振测试T2谱图和低温N2吸附孔径分布曲线相结合进行分析,对煤样中渗流孔和吸附孔的形状进行分类,分别确定两种类型孔隙的几何形状因子和表面弛豫率,然后根据吸附孔和渗流孔各自的表面弛豫率和几何形状因子,得出该煤样的吸附孔分布和渗流孔分布,进而组成煤样的全孔径分布图,从而精准表征煤的孔隙结构;本发明弥补了现有核磁共振测试过程中,使用单一孔隙几何形状因子和表面弛豫率,不能精确求解样品孔径分布的缺陷(即由于煤中不同孔径范围的孔隙表面弛豫率不同会使得对应范围的孔径分布也不同),有效提高了煤样全孔径分布测试的准确性。

    坚硬煤层携砂氧化剂脉动注入-静态压裂组合储改方法

    公开(公告)号:CN118774821A

    公开(公告)日:2024-10-15

    申请号:CN202410919050.3

    申请日:2024-07-10

    IPC分类号: E21C41/18 E21F7/00

    摘要: 本发明公开了一种坚硬煤层携砂氧化剂脉动注入‑静态压裂组合储改方法,先向煤层脉动注入携砂氧化液,其在脉冲波的水楔劣化效应下冲击煤体,同时氧化液在冲击过程中与煤体接触进行氧化反应使煤体形成压裂弱面产生微裂隙,进而使石英砂小颗粒及氧化液挤入微裂隙内对微小裂缝扩孔、延孔的同时增大氧化液与煤体的接触面积,增强氧化效果,为后续静态压裂提供较多压裂弱面;接着向煤层注入携砂压裂液进行静态压裂,使压裂弱面中各个微小裂隙汇聚、发育、纵向扩展,并使石英砂大颗粒挤入扩孔后裂隙内进一步扩孔、延孔,通过交替进行氧化剂脉动注入和静态压裂过程,持续使煤层内部形成复杂的裂隙网络,最终完成对煤层进行原位氧化‑静态压裂递进式增透。

    一种不可采煤层强化煤层气开采及CO2封存的方法

    公开(公告)号:CN115539130B

    公开(公告)日:2024-02-23

    申请号:CN202211331912.8

    申请日:2022-10-28

    IPC分类号: E21F17/16 E21B43/26

    摘要: 本发明公开了一种不可采煤层强化煤层气开采及CO2封存的方法,先通过CO2泡沫脉动压裂的方式对不可采煤层进行压裂,从而扩大储层改造范围,提升煤体裂化效果,为CO2的封存提供广阔的吸附空间,接着开始进行CO2注入驱替煤层气强化抽采过程,通过CO2注入与煤层气抽采同时进行,CO2气体在抽采系统、注入井、不可采煤层和排采井之间形成封闭的循环,从而使CO2气体持续注入煤层内的各个裂隙内,持续驱替吸附态甲烷解吸排出,并将CO2气体吸附在煤层内,直至煤层气被大量抽采完毕后,对不可采煤层进行封井实现CO2封存。不仅能有效提高该煤层的瓦斯抽采率,还对CO2封存后具有较好的密封效果。

    一种模拟液氮注入可视化及注入效率量化分析系统及方法

    公开(公告)号:CN117517165A

    公开(公告)日:2024-02-06

    申请号:CN202311498574.1

    申请日:2023-11-10

    摘要: 本发明公开了一种模拟液氮注入可视化及注入效率量化分析系统及方法,制作带有预制钻孔的煤体试样模拟煤层及水平井井筒,用于后续液氮注入模拟测试;进行液氮注入时,液氮注入装置将液氮注入至预制钻孔内,使其与煤充分接触进行低温增透,此时测量得到的预制钻孔内液氮累积量及测得的液氮注入量能得出液氮注入效率;并且通过转动机构模拟不同的倾斜角度分别进行测试,从而能获得该煤层在不同倾斜角度、不同液氮注入位置情况下的液氮注入效率,根据该数据能对液氮在煤层现场实际应用时关键液氮注入参数设置提供指导,有利于液氮增透技术的推广。另外通过可视化装置获得钻孔在液氮注入过程中产生裂隙的过程,便于了解液氮注入过程中致裂的规律。

    一种定容空间液氮相变膨胀升压极限测量装置及方法

    公开(公告)号:CN117517127A

    公开(公告)日:2024-02-06

    申请号:CN202311504206.3

    申请日:2023-11-10

    IPC分类号: G01N7/00 G01K7/02

    摘要: 本发明公开了一种定容空间液氮相变膨胀升压极限测量装置及方法,先建立计算模型,将液氮倒入真空保温杯内,利用真空保温杯隔热效果好的特点,使得液氮在真空保温杯内部稳定,从而精确获得液氮体积量;将真空保温杯放入高压反应釜内,测试时,通过转动机构使高压反应釜从竖直状态向水平状态倾斜,使真空保温杯内部的液氮快速流出至釜体内进行相变膨胀,稳定后得到的压力即为该体积液氮的相变膨胀升压极限;整个过程稳定实施,最终能精确获得不同体积液氮在固定容积内的相变膨胀升压极限,并与计算模型获得数据进行比较确定修正系数,从而获得修正后计算模型,采用该模型用于指导液氮进行煤层实际增透时所需液氮膨胀压大小及与之匹配的注入量关系。