-
公开(公告)号:CN111664977B
公开(公告)日:2022-03-04
申请号:CN202010470020.0
申请日:2020-05-28
Applicant: 哈尔滨工业大学
Abstract: 一种丝织构薄膜残余应力检测方法,它属于薄膜材料的特性表征技术领域。本发明解决了采用传统方法对丝织构薄膜残余应力的测试不准确的问题。本发明基于丝织构薄膜所具有的横向等方性,对其残余应力分析提出了具体的解决方案。通过坐标系转换,直接计算出样品坐标系下样品的弹性张量,从而根据广义胡克定律就可以建立样品坐标系下的宏观残余应力和应变的关系。采用本发明建立的残余应力和应变关系的理论模型,可以有效解决传统X射线衍射应力测试方法对丝织构薄膜残余应力测试的不准确问题。本发明可以应用于丝织构薄膜残余应力的检测。
-
公开(公告)号:CN111664978B
公开(公告)日:2021-12-07
申请号:CN202010470968.6
申请日:2020-05-28
Applicant: 哈尔滨工业大学
Abstract: 一种曲面异形件的残余应力表征方法,本发明涉及曲面异形件的残余应力表征方法。本发明的目的是为了解决现有方法对残余应力的测定准确率低的问题。过程为:一、计算该窗口宽度引起的衍射峰的宽化;二、对于球形样品,将球形样品半球进行遮挡,从出射窗口发射的X射线,只有一半的光线照射到球形样品上,不考虑球面曲率的影响,则将直接导致峰位向高角偏移Δθ/4;三、对于平面样品,计算衍射峰位向低角偏移的角度与偏移距离的关系;四、计算出出射窗口沿衍射圆周弧长方向的宽度L照射在球面上的弧长;五、确定各个入射角下球面曲率引起的最终峰位偏移;六、得到球形样品的残余应力。本发明用于材料的残余应力表征领域。
-
公开(公告)号:CN110157931B
公开(公告)日:2021-05-04
申请号:CN201810148214.1
申请日:2018-02-13
Applicant: 哈尔滨工业大学
Abstract: 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法,属于纳米碳增强金属基复合材料技术领域。本发明解决现有制备纳米碳增强金属基复合材料方法存在石墨烯与铜混合均匀性较差、混合过程中石墨烯结构易被破坏、成本较高、工艺较复杂的技术问题。本发明的金属基复合材料是将作为碳源的低分子量有机物(分子量小于1000)吸附于金属粉体表面后烧结而成的;具体制备方法是按下述操作进行的:将低分子量有机物分散于溶剂中,再将金属粉体分散其中,搅拌后静置,滤去上层清液后干燥,得到表面均匀包覆低分子量有机物的金属粉体;最后制备复合材料。
-
公开(公告)号:CN112011705A
公开(公告)日:2020-12-01
申请号:CN201910464098.9
申请日:2019-05-30
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了纳米碳增强铜基复合材料批量制备方法,属于铜基复合材料技术领域。本发明要解决现有制备纳米碳/铜复合材料存在纳米碳在铜基体中分散的均匀性不好、成本较高以及工艺较复杂等技术问题。本发明方法如下:一、将纳米碳材料与粒径小于1毫米的铜化合物粉体混合,在气体气氛下加热,保温;二、然后在真空或者气体气氛下熔铸或者烧结,得到纳米碳增强铜基复合材料。本发明方法原料便宜、设备成本低和操作简单,能原位制备纳米铜颗粒并与纳米碳均匀复合,易于进行批量化生产。
-
公开(公告)号:CN111548149A
公开(公告)日:2020-08-18
申请号:CN202010456718.7
申请日:2020-05-26
Applicant: 哈尔滨工业大学
IPC: C04B35/468 , C04B35/622 , C04B35/638 , C04B41/88 , H01L41/187
Abstract: 一种高温度稳定性的钛酸钡无铅压电陶瓷及其制备方法,涉及压电陶瓷领域,尤其涉及一种钛酸钡基无铅压电陶瓷及其制备方法。是要解决现有的钛酸钡基无铅压电陶瓷存在压电性能较差、滞后较大、温度稳定性差的问题。该钛酸钡无铅压电陶瓷的结构通式为Ba1-x(Li0.5,B0.5)xTiO3,其中0.001≤x≤0.1。方法:一、原料称量;二、球磨,干燥;三、将干燥好的粉料加热至预烧制温度后进行保温,冷却;四、将预烧制后的粉料球磨,干燥;五、将球磨干燥后的粉料压制成型;六、将压制成型的样品加热至烧结温度后进行保温,冷却;七、将烧结后的陶瓷元件进行恒场强保温,之后恒场强冷却至室温。本发明应用于无铅压电陶瓷领域。
-
公开(公告)号:CN110699566A
公开(公告)日:2020-01-17
申请号:CN201910577397.3
申请日:2019-06-28
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了CaMn7O12增强低膨胀高热导铜基复合材料及其制备方法,属于铜基复合材料的技术领域。本发明的目的是为了解决金属材料、陶瓷材料无法同时满足低热膨胀系数、高热导、高电导和良好加工性能的问题。本发明中铜基复合材料由金属基体和增强体制成,所述金属基体为纯铜粉或铜合金粉;增强体为CaMn7O12陶瓷粉体,或由铜、氧化铜、银、氧化镍或氧化锆等界面涂层包覆CaMn7O12陶瓷粉体;本发明方法:对金属基体和增强体进行球磨混粉,然后冷压后烧结。本发明在低陶瓷体积分数条件下具备低热膨胀系数、高热导性、高电导的性能。
-
公开(公告)号:CN106450154B
公开(公告)日:2019-03-08
申请号:CN201611082749.0
申请日:2016-11-30
Applicant: 哈尔滨工业大学
Abstract: 一种锂离子电池铝集流体表面原位生长石墨烯的制备方法,它涉及锂离子电池铝集流体的制备方法。本发明要解决现有锂离子电池铝集流体材料中存在的接触电阻较高,集流体难以实现与活性物质的紧密结合的问题。方法:一、铝集流体表面预处理;二、铝集流体表面三维结构化处理;三、铝集流体表面预制预置氧化石墨烯层;四、铝集流体表面刻蚀处理;五、铝集流体表面生长三维结构石墨烯,即完成锂离子电池铝集流体表面原位生长石墨烯的制备方法。本发明用于一种锂离子电池铝集流体表面原位生长石墨烯的制备方法。
-
公开(公告)号:CN109304478A
公开(公告)日:2019-02-05
申请号:CN201710622972.8
申请日:2017-07-27
Applicant: 哈尔滨工业大学
Abstract: 一步法制备石墨烯/铜复合粉体的方法,属于无机合成和粉末冶金的技术领域。本发明解决了现有制备石墨烯/铜复合粉体存在石墨烯在铜表面包覆的均匀性不好、成本较高、工艺较复杂等技术问题。本发明方法如下:在无氧气气氛、气压为0.001Pa-101325Pa条件下,将有机铜盐粉体以1-500℃/min的速率升温至600-1050℃,加热0.1min-600min后在无氧气气氛下冷却,即得到石墨烯/铜复合粉体。本发明采用铜盐作为原料,价格便宜、设备和操作非常简单,易于进行批量化生产;本发明在一步加热的过程中同时实现了铜纳米粒子的制备与石墨烯在纳米粒子表面的包覆。
-
公开(公告)号:CN105405680B
公开(公告)日:2018-01-30
申请号:CN201511009330.8
申请日:2015-12-28
Applicant: 哈尔滨工业大学
CPC classification number: Y02E60/13
Abstract: 一种碳颗粒/二氧化锰复合电极材料的制备方法,本发明涉及复合电极材料的制备方法。本发明要解决现有二氧化锰电极材料存在的内阻高、充放电循环稳定性差的问题。本发明的方法:将硫酸锰、高锰酸钾及蒸馏水混合均匀,将基片置于混合溶液中,水热反应,得到二氧化锰纳米片材料,将二氧化锰纳米片材料置于等离子体增强化学气相沉积真空装置进行沉积,得到碳颗粒/二氧化锰复合电极材料。本发明用于一种碳颗粒/二氧化锰复合电极材料的制备方法。
-
公开(公告)号:CN104860308B
公开(公告)日:2017-05-31
申请号:CN201510259037.0
申请日:2015-05-20
Applicant: 哈尔滨工业大学
IPC: C01B32/184
Abstract: 本发明提供了一种应用燃烧合成法制备掺氮石墨烯的方法,所述方法步骤如下:(1)将称取好的镁粉、固体碳源和氮源均匀混合,得到混合粉体,所述混合粉体中镁粉、固体碳源与氮源的质量比为19.95~99:40~79.95:1~39.5;(2)将步骤(1)所得到的混合粉体在特定气氛中进行燃烧合成反应,反应产物经提纯后,得到掺氮石墨烯。本发明原料来源广泛,所制得的掺氮石墨烯片层结构完整,溶剂中分散性好,有效比表面积大,并且通过氮掺杂能使掺氮石墨烯具备铁磁性。
-
-
-
-
-
-
-
-
-