-
公开(公告)号:CN115963788A
公开(公告)日:2023-04-14
申请号:CN202211591643.9
申请日:2022-12-12
Applicant: 中南大学 , 北京瑞太智联技术有限公司
IPC: G05B19/418
Abstract: 本申请适用于工业过程质量指标在线预测技术领域,提供了一种多采样率工业过程关键质量指标在线预测方法,包括:挑选影响工业过程关键质量指标的过程变量作为建模辅助变量;获取辅助变量时间序列集;按照采样频率从高至低的顺序,对辅助变量时间序列集中的时间序列进行排序;利用多粒度补全模型对排序后的原始输入数据进行数据补全重构;利用Transformer网络提取数据样本级相关性,输出深层特征;将深层特征输入全连接层,得到关键质量指标的预测值;对多层卷积网络、样本采样类别编码网络、编码器、解码器和全连接层构成的指标预测模型进行训练;利用训练后的指标预测模型实时预测质量指标。本申请能提高关键质量指标的预测精确度。
-
公开(公告)号:CN115131561A
公开(公告)日:2022-09-30
申请号:CN202210779475.X
申请日:2022-07-04
Applicant: 中南大学
Abstract: 本公开实施例中提供了一种基于多尺度特征提取与融合的钾盐浮选泡沫图像分割方法,属于图像处理技术领域,具体包括:采集钾盐粗选过程的泡沫图像,标注泡沫图像中各个泡沫边缘的多个像素点获取泡沫所在区域,进而得到语义分割标签图像后,由泡沫图像和语义分割标签图像构建原始数据集,并扩充原始数据集的样本,划分为训练集和测试集;构建浮选泡沫图像分割深度神经网络模型;以训练集作为输入,对浮选泡沫图像分割深度神经网络模型进行训练;获取待分割的浮选泡沫图像并裁剪至指定尺寸,随后输入到训练完成的浮选泡沫图像分割深度神经网络模型,得到分割结果。通过本公开的方案,提高了钾盐浮选泡沫图像的分割精准度。
-