基于无监督聚类的长文本可信度评估方法及系统

    公开(公告)号:CN110287314B

    公开(公告)日:2021-08-06

    申请号:CN201910418900.0

    申请日:2019-05-20

    IPC分类号: G06F16/35

    摘要: 本发明涉及一种基于无监督聚类的长文本可信度评估方法,包括:以已知长文本获取训练数据,提取该训练数据的训练特征以构建训练特征向量集,对该训练特征向量集进行无监督聚类,得到多个训练类心;以待评估长文本获取评估数据,提取该评估数据的评估特征向量;获取该评估特征向量相对该训练类心的评估值,并以该评估值得到该待评估长文本的可信度。本发明通过无监督聚类对长文本进行可信度评估,在实施过程中不需要标注数据,节省了人力、物力与时间,避免了数据中标签稀疏带来的困扰;提取了长文本的文本特征,对于可信度评估任务更加适用,使用该模型得到的文本的可信度更具有可解释性,同时在平台之间可以迁移。

    基于社交网络重构的意见领袖识别方法和装置

    公开(公告)号:CN113190765A

    公开(公告)日:2021-07-30

    申请号:CN202110443387.8

    申请日:2021-04-23

    发明人: 张翔宇 解峥

    IPC分类号: G06F16/9536 G06Q50/00

    摘要: 本发明公开了基于社交网络重构的意见领袖识别方法和装置。所述方法包括:获取多个用户的行为数据;根据多个用户的行为数据,构建社交网络;根据各用户的行为数据,确定各用户对于目标话题领域的关注度;基于预设的规则,根据各用户对于所述目标话题领域的关注度,重构所述社交网络;基于重构的社交网络,选择所述目标话题领域的意见领袖。基于该方法及装置,可以实现对于目标话题领域的意见领袖的准确识别。

    基于知识标注评价的任务分配方法及系统

    公开(公告)号:CN110443476A

    公开(公告)日:2019-11-12

    申请号:CN201910667446.2

    申请日:2019-07-23

    摘要: 本发明公开了一种基于知识标注评价的任务分配方法,其特征在于,包括:对标注员往期标注任务进行评分,并按任务完成时段及按任务类型将综合分数存储于标注员人物库中;根据待分配任务的类型和任务发布时间所属时段检索标注员人物库,筛选综合分数高于预定阈值的标注员,并从中选出已分配任务量最少的标注员,向其下发待分配任务。本发明公开了一种基于知识标注评价的任务分配系统。本发明在任务分配时综合利用标注员评价结果,根据知识库类型、业务方向、标注效果等维度建立任务分配策略,将新的标注任务自动分配给合适的标注员,提升任务分配的效率及知识标注的整体质量。

    基于深度神经网络的新闻流行度预测模型训练方法

    公开(公告)号:CN110083699A

    公开(公告)日:2019-08-02

    申请号:CN201910202638.6

    申请日:2019-03-18

    IPC分类号: G06F16/35

    摘要: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。