-
公开(公告)号:CN112648717B
公开(公告)日:2022-05-17
申请号:CN202011493699.1
申请日:2020-12-16
Applicant: 桂林电子科技大学
IPC: F24F11/62 , F24F11/64 , F24F11/74 , F24F110/10
Abstract: 本发明公开了一种基于径向基神经网络的多区域变风量空调系统末端控制方法,包括以下步骤:(1)设定房间温度值;(2)通过温度传感器获取房间实际温度值;(3)初始化RBF神经网络和PID控制器的各项参数;(4)将房间实际温度值与房间温度设定值进行比较作差;(5)改进RBF‑PID算法调整自身的权重系数;(6)优化PID的kp、ki和kd参数;(7)风阀控制器控制末端风阀达到合适开度;(8)重复步骤(1)至步骤(7),以采样时间为周期进行采样。本发明通过RBF神经网络对传统PID控制器的参数进行实时调整,对末端的有效控制来提高多区域变风量空调控制系统对于室内温度的控制精度和抗干扰性能。
-
公开(公告)号:CN111650339A
公开(公告)日:2020-09-11
申请号:CN202010539020.1
申请日:2020-06-13
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种建筑室内多个污染源释放强度的逆向辨识方法,包括以下步骤:步骤一:对建筑室内环境参数采用CFD数值模拟技术获得稳定热流动场;步骤二:基于污染源贡献率(CRPS)方法获得多个污染源释放的室内浓度与监测点的浓度之间的传输矩阵A,利用传输矩阵A建立逆模型;步骤三:采用Tikhonov正则化方法增强逆模型求解的稳定性;步骤四:选取正则化矩阵L,计算正则化参数λ,基于监测点浓度求解污染源浓度。本发明辨识污染源释放强度方法解决了传统辨识方法的单一性和复杂性,为建筑室内快速有效地辨识多个污染源释放强度提供了新的方案。
-
公开(公告)号:CN111639462A
公开(公告)日:2020-09-08
申请号:CN202010476862.7
申请日:2020-05-29
Applicant: 桂林电子科技大学
IPC: G06F30/27 , G06N3/04 , G06N3/08 , G06F119/08
Abstract: 本发明公开了一种基于深度置信神经网络的自然通风环境下建筑室内热舒适预测方法,包括以下步骤:(1)进行现场实测,得到的关于自然通风环境下建筑室内热舒适环境参数和人体参数的样本数据,建立自然通风环境下建筑室内热舒适预测模型;(2)利用Matlab软件将环境参数和人体参数作为深度置信神经网络的输入参数,建立深度置信神经网络训练模型对训练样本进行学习训练,并调试得到最佳的训练模型;(3)确定深度置信神经网络测试模型,把测试样本放入该训练好的测试模型中进行自然通风环境下建筑室内热舒适的预测。本发明的预测方法解决了应用传统建筑室内热舒适预测方法来预测自然通风环境下建筑室内热舒适的精度不足和适用性不强的问题,为自然通风环境下建筑室内热舒适预测提供了有效的解决方案。
-
-